Documentation

Complete reference for all ContextDigger features

What is ContextDigger?

ContextDigger is a codebase navigation tool that helps developers explore large projects by automatically discovering logical areas, tracking exploration history, and maintaining context across sessions.

⚡ Requires Claude Code

All commands like /init-dig, /dig, and /mark-spot are used within Claude Code chat sessions. Future support for Cursor and other AI tools coming soon.

Key Capabilities:

  • Auto-Discovery: Automatically finds and organizes code areas
  • Context Preservation: Never lose your place while coding
  • Team Collaboration: Share knowledge and track activity
  • Analytics: Understand your codebase deeply

Installation

⚡ Quick Install (Recommended)

Install or update ContextDigger with a single command:

$ curl -sSL https://contextdigger.com/install.sh | bash

This automatically installs the Python package and Claude Code skills. Works for both fresh installs and upgrades.

📋 Manual Installation (Alternative)

Step 1: Install Python Package

$ pip3 install --user git+https://github.com/ialameh/contextdigger.git

Step 2: Install Claude Skills

$ curl -o - "https://raw.githubusercontent.com/ialameh/contextdigger/main/install-skills.sh" | bash

Step 3: Verify Installation

$ contextdigger --version
ContextDigger v1.0.0

Feature Areas

1. Discovery & Navigation

Auto-discover code areas, navigate with precision, bookmark locations

/init-dig /dig /redig /mark-spot /goto-spot

2. History & Context

Browser-like navigation, snapshots, breadcrumbs, suggestions

/dig-history /dig-back /dig-forward /dig-snapshot /dig-suggest

3. Team Collaboration

Team presence, knowledge sharing, wiki generation

/dig-team /dig-note /dig-wiki

4. Code Intelligence

Dependencies, impact analysis, hotspots, coverage

/dig-deps /dig-impact /dig-hotspots /dig-coverage /dig-gaps

5. Analytics & Insights

Work tracking, productivity metrics, reporting

/dig-analytics /dig-dashboard /dig-stats /dig-report

Supported Languages & Frameworks

Auto-Detected Languages:

Python

pytest, unittest frameworks

JavaScript / TypeScript

Jest, Vitest, Mocha test frameworks

Salesforce

Apex, Lightning Web Components

React Ecosystem

Next.js, Astro, React

Markdown & Scripts

Shell scripts, documentation

Any Language!

Works universally with pattern detection

Works with any language! Auto-detection provides enhanced features (better area names, framework-specific metadata), but ContextDigger functions with any codebase through pattern-based analysis.

Project Structure

After running /init-dig, ContextDigger creates a .cdg/ directory:

your-project/
└── .cdg/                      # ContextDigger data directory
    ├── config.json            # Project configuration
    ├── .gitignore             # Excludes user-specific data
    ├── areas/                 # Discovered code areas (commit these!)
    │   ├── backend-api.json
    │   ├── frontend-components.json
    │   └── ...
    ├── sessions/              # Exploration history (gitignored)
    │   └── .json
    └── bookmarks/             # Marked locations (gitignored)
        └── bookmarks.json

✅ Commit to Git

  • .cdg/areas/ - Share discoveries with team
  • .cdg/config.json - Project settings

❌ Don't Commit (Personal)

  • .cdg/sessions/ - Personal history
  • .cdg/bookmarks/ - Personal bookmarks

Real-World Examples

Example 1: Large Monorepo Navigation

Working on a large monorepo with multiple services and shared utilities:

# Initialize and discover all services
/init-dig
# Discovers: auth-service, payment-api, admin-dashboard, mobile-app, shared-utils
/dig payment-api
# Context: Now focused on payment processing
/mark-spot stripe-integration
# Bookmarks: payments/stripe/webhook_handler.py:45
# Days later...
/goto-spot stripe-integration
# Instantly: Back to payments/stripe/webhook_handler.py:45

Example 2: Bug Investigation Workflow

Tracking down a bug that spans frontend and backend:

/dig backend-api
# Found the bug in the backend
/mark-spot bug-location
# Bookmark the problematic code
/dig frontend-components
# Check how frontend calls this API
/goto-spot bug-location
# Jump back to fix the bug
/dig-history
# Review your investigation path

Example 3: Onboarding New Team Member

Help new developers understand the codebase quickly:

/init-dig
# Areas automatically discovered and documented
/dig-dashboard
# Overview of entire codebase
/dig authentication
# Start with critical systems
/dig-team
# See who owns what areas
/dig-note "Ask Sarah about auth flow"
# Document learning discoveries

Troubleshooting

"ContextDigger not initialized" error

Solution: Run /init-dig in your project directory first.

This creates the .cdg/ directory and discovers your code areas.

"ModuleNotFoundError: No module named 'contextdigger'"

Solution: Install the Python package:

pip3 install --user git+https://github.com/ialameh/contextdigger.git
"/init-dig command not found"

Solution: Install Claude Code skills:

curl -o - "https://raw.githubusercontent.com/ialameh/contextdigger/main/install-skills.sh" | bash

Or use the one-line installer:

curl -sSL https://contextdigger.com/install.sh | bash
"Discovery finds 0 areas"

Possible causes:

  • Very small project (< 5 files)
  • All files in gitignore
  • Unusual project structure

Solution: Manually create areas or adjust exclude patterns in .cdg/config.json

"contextdigger: command not found" (CLI)

Solution: Add Python user bin to PATH:

# macOS/Linux
export PATH="$HOME/.local/bin:$PATH"
# Add to ~/.bashrc or ~/.zshrc to make permanent

Quick Start

  1. 1. Install package & skills
  2. 2. Run /init-dig in project
  3. 3. Use /dig to navigate
  4. 4. Mark spots with /mark-spot

Stats

Commands: 40+
Features: 5 areas
Code: 4,330 lines
Dependencies: 0

Product Roadmap

From context management to context-free code intelligence

v1.1 CURRENT

Bug Fixes & Enhanced Discovery

Released December 2025 - Critical improvements to code area discovery

  • Fixed hardcoded package detection - Now discovers all Python packages, not just specific ones
  • Eliminated cache pollution - Properly excludes .mypy_cache, __pycache__, node_modules
  • Extended discovery depth - Finds nested projects up to 3 levels deep (e.g., flowmason/studio/frontend)
  • Impact: Discovered areas increased from 36 to 139 in FlowMason project (386% improvement)
v2.0 COMING Q1-Q2 2026

AST Symbol Indexing

Goal: Eliminate context window limits with offline local indexing

🔍 Symbol Indexing

  • • Tree-sitter AST parsing
  • • Index classes, functions, methods
  • • Build call graphs automatically
  • • Track imports & dependencies
  • • SQLite local storage

⚡ Instant Queries

  • /find-symbol - Go to definition
  • /find-references - Find all usages
  • /show-callers - Call hierarchy
  • /show-dependencies - Imports graph
  • • All queries <50ms, zero tokens

🎯 Impact: Context-Window Independence

Before (v1.1)
Limited by 200k token context
Grep searches load content
Slow on large codebases
After (v2.0)
Handle 10M+ lines easily
Query local index (zero tokens)
Sub-second responses
Language Support
Python, TypeScript, JavaScript
Dart, Apex (Salesforce)
Go, Rust coming in v2.1
Pricing: FREE for all users - validates feature value
v2.5 COMING Q2-Q3 2026

Team Collaboration Features

Goal: Launch paid Team tier with cross-project intelligence

🔗 Cross-Project Search

Search symbols across all team repos

👥 Shared Indexes

Team members see same indexed code

📊 Team Analytics

Productivity metrics & insights

💰 Pricing: Team Tier
$15/user/month for teams of 5-50 developers
ROI: Save 2+ hours/day per developer = $24k/month value for $75/month cost
v3.0 COMING Q3-Q4 2026

Vector DB Semantic Search

Goal: AI-powered semantic code search

🧠 Semantic Queries

  • • "Find code that handles JWT authentication"
  • • "Show me similar authentication patterns"
  • • Code similarity detection (find duplicates)
  • • Smart documentation (usage examples)

⚙️ Technical Approach

  • • Local embedding generation (CodeBERT)
  • • FAISS vector database
  • • Runs offline (privacy-first)
  • • Incremental updates
💰 Pricing Tiers
Free: 5 semantic searches per day
Team ($15/mo): 100 searches per day + cross-project
Enterprise ($40/mo): Unlimited + private embeddings
v3.5+ FUTURE

Enterprise & Platform Expansion

🏢 Enterprise Features (v3.5)

  • • Security pattern detection
  • • Compliance scanning (GDPR, HIPAA)
  • • Self-hosted deployment
  • • SOC 2 Type II certification
  • • Audit logs & governance

🚀 Platform Expansion (v4.0)

  • • Cursor support (10x market size)
  • • VS Code extension
  • • Public API
  • • Plugin marketplace

Technical Architecture

Local Storage (No Cloud)

  • • SQLite for symbol index
  • • FAISS for vector embeddings
  • • All data stays on your machine
  • • Optional team sync via PostgreSQL

Performance Targets

  • • Index 100k lines in <30 seconds
  • • Query response <50ms
  • • Index size <50MB for 1M lines
  • • Incremental updates <5 seconds